Part Number Hot Search : 
SNC21300 1A272 35000 7631BCJ XCF32P DS2775GR C5039 P0502NL
Product Description
Full Text Search
 

To Download TLE5009-E1010 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  atv sc data sheet rev. 1.1, 2012-04 tle5009 tle5009-e2000 tle5009-e1000 tle5009-e2010 TLE5009-E1010 angle sensor gmr-based angular sensor
edition 2012-04 published by infineon technologies ag 81726 munich, germany ? 2012 infineon technologies ag all rights reserved. legal disclaimer the information given in this docu ment shall in no event be regarded as a guarantee of conditions or characteristics. with respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, infine on technologies hereby disclaims any and all warranties and liabilities of any kind, including witho ut limitation, warranties of non-infrin gement of intellectua l property rights of any third party. information for further information on technology, delivery terms and conditions and prices, please contact the nearest infineon technologies office ( www.infineon.com ). warnings due to technical requirements, components may contain dangerous substances. for information on the types in question, please contact the nearest infineon technologies office. infineon technologies compon ents may be used in life-su pport devices or systems only with the express written approval of infineon technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safe ty or effectiveness of that de vice or system. life support devices or systems are intended to be implanted in the hu man body or to support an d/or maintain and sustain and/or protect human life. if they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
tle5009 data sheet 3 rev. 1.1, 2012-04 trademarks of infineon technologies ag aurix?, c166?, canpak?, ci pos?, cipurse?, econopac k?, coolmos?, coolset?, corecontrol?, crossave?, dave?, easypim?, econobridge?, econ odual?, econopim?, eicedriver?, eupec?, fcos?, hitfet?, hybridpack?, i2rf?, isoface?, isopack?, mipaq?, modstack?, my-d?, novalithic?, optimos?, or iga?, primarion?, prim epack?, primestack?, pro-sil?, profet?, rasic?, reversave?, satric?, sieget?, sindrion?, sipmos?, smartlewis?, solid flash?, tempfe t?, thinq!?, trench stop?, tricore?. other trademarks advance design system? (ads) of agilent te chnologies, amba?, arm?, multi-ice?, keil?, primecell?, realview?, thumb?, vision? of arm limited, uk. autosar? is licensed by autosar development partnership. bluetooth? of bluetooth sig inc. cat-iq? of dect forum. colossus?, firstgps? of trimble navigation ltd. emv? of emvc o, llc (visa holdings in c.). epcos? of epcos ag. flexgo? of microsoft corp oration. flexray? is licensed by flexray consortium. hyperterminal? of hilgraeve incorporated. iec? of commission electrot echnique internationale. irda? of infrared data association corporation. iso? of international organization for standardization. matlab? of mathworks, inc. maxim? of maxim integrated products, inc. microtec?, nucleus? of mentor graphics corporation. mifare? of nx p. mipi? of mipi alliance, inc. mips? of mips technologies, inc., usa. murata? of murata manufacturing co., microwave offi ce? (mwo) of applied wave research inc., omnivision? of omnivision technologies, inc. open wave? openwave systems inc. red hat? red hat, inc. rfmd? rf micro devices, inc. sirius? of sirius sate llite radio inc. solaris? of sun microsystems, inc. spansion? of spansion llc ltd. symbian? of sy mbian software limited. taiyo yuden? of taiyo yuden co. teaklite? of ceva, inc. t ektronix? of tektroni x inc. toko? of toko kabushiki kaisha ta. unix? of x/open company limited. verilog?, palladium? of cadence design systems, inc. vlynq? of texas instruments inco rporated. vxworks?, wind river? of wind river systems, inc. zetex? of diodes zetex limited. last trademarks update 2011-02-24 revision history changes subjects (changes since revision 1.0) chapter 3.3 inserted magnetic field definition chapter 3.4.3 updated parameter x,y amplitude chapter 3.4.4 inserted calibration information for definition of overall angle error chapter 3.4.5 updated information of overall angle error, product types included: tle5009-e2010, tle5009- e1010 chapter 3.5.2 inserted information on external safety checks, differential vector length check
tle5009 table of contents data sheet 4 rev. 1.1, 2012-04 table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 list of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 list of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 product description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 target applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2 functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1 general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.4 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.1 application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.1 electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.2 electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.3 output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4.4 calibration of tle5009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.4.1 extraction of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.4.1.1 min-max method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4.4.1.2 exact method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.4.4.2 final parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4.4.3 angle calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4.5 angle performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.5 safety features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.1 built in error diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.2 external diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.5.2.1 vector length check differential voltage mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.6 electro magnetic compatibility (emc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.1 package parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.3 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 table of contents
tle5009 list of figures data sheet 5 rev. 1.1, 2012-04 figure 1 sensitive bridges of the gmr sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 figure 2 ideal output of the gmr sensor bridges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 figure 3 pin configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 figure 4 tle5009 block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 figure 5 application circuit for the tle5009 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 6 magnetic input field strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 figure 7 single-ended output signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 figure 8 differential output of ideal cosine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 figure 9 calibration routine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 figure 10 min-max method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 figure 11 orthogonality error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 figure 12 correction of orthogonality error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 figure 13 implementation of angle calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 figure 14 valid vector length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 figure 15 package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 16 position of sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 17 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 18 tape and reel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 list of figures
tle5009 list of tables data sheet 6 rev. 1.1, 2012-04 table 1 pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 table 2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 table 3 operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 table 4 electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 5 esd protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 table 6 single-ended output parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 table 7 differential output parame ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 8 angle performance in differential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 9 valid vector length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 table 10 package parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 list of tables
tle5009 product description data sheet 7 rev. 1.1, 2012-04 1 product description 1.1 overview the tle5009 is an angle sensor with analog outputs. it det ects the orientation of a ma gnetic field by measuring sine and cosine angle components with g iant m agneto r esistance ( gmr ) elements. it provides analog sine and cosine output voltages that describe the magnet angle in a range of 0 to 360. the differential gmr bridge signals are temperature comp ensated and independent of the magnetic field strength to maintain constant output voltage over a wide temper ature and field range. the a nalog output is designed for differential applications. the output voltages are designed to use the dynamic ran ge of an a/d-converter using the same supply as the sensor as voltage reference. product type tle5009-e2000 and tle5009-e2010 are intended for use in circuits with 5 volts supply. product types tle5009-e1000 and tle5 009-e1010 are intended for use in 3.3v applications. product types tle5009-e2010 and TLE5009-E1010 have improved angular accuracy achieved by production trimming at two temperatures. 1.2 features ? 3v to 5.5v operating supply voltage ? low current consumption and very quick start up ? overvoltage detection ? 360 contactless angle measurement ? output amplitude optimized for circuits with 3.3v or 5v supply voltage (type -e10x 0 or -e20x0 respectively) ? immune to airgap variations due to gmr based sensing principle ? output amplitude constant over a wide temperature range: -40c to 150c (junction temperature) ? high accuracy typically 0.6 overall angle error ? aec-q100 automotive qualified ? green package with lead-free (pb-free) plating 1.3 target applications the tle5009 gmr angle sensor is designed for angular position sensing in automotive applications. its high accuracy combined with short propagation delay makes it suitable for syst ems with high speeds and high accuracy demands such as rotor position measurement for electric motor commutation. at the sa me time its fast start-up time and low overall power consumption enables the device to be employed in low-power applications. extremely low power consumption can be achieved with power cycling, where the device excells with fastest power on time. ? rotor position sensing for electric motor commutation ? rotary switches ? steering angle sensing ? valve or flap position sensing product type marking ordering code package tle5009-e2000 0092000 sp000912760 pg-dso-8 tle5009-e1000 0091000 sp000912764 pg-dso-8 tle5009-e2010 0092010 sp000912770 pg-dso-8 TLE5009-E1010 0091010 sp000912774 pg-dso-8
tle5009 functional description data sheet 8 rev. 1.1, 2012-04 2 functional description 2.1 general the gmr sensor is implemented using vertical integr ation. this means that the gmr sensitive areas are integrated above the analog portion of the tle500 9 chip. these gmr elements change their resistance depending on the direction of the magnetic field. four individual gmr elements are connected in a wheatstone bridge arrangement. each gmr element senses one of two components of the applied magnetic field: ? x component, v x (cosine) or the ? y component, v y (sine) the advantage of a full-bridge structure is that the amplit ude of the gmr signal is doubled and temperature effects cancel out. figure 1 sensitive bridges of the gmr sensor note: in figure 1 , the arrows in the resistors symbolize the direction of the reference layer. size of the sensitive areas is greatly exagerated for better visualisation. the output signal of each bridge is unambiguous in a range of 180. therefor e two bridges are oriented orthogonally to each other to measure 360. with the trigonometric function arctan, the true 360 angl e value that is represented by the relation of x and y signals can be calculated according to equation (1) . (1) v dd gnd adc x + gmr resistors adc x -adc y +adc y - v x v y 0 n s 90
tle5009 functional description data sheet 9 rev. 1.1, 2012-04 figure 2 ideal output of the gmr sensor bridges v angle 90 180 270 360 0 v x (cos_p) y component (sin) v y (sin_p) v y v x x component (cos) v y (sin_n) v x (cos_n) 0 90
tle5009 functional description data sheet 10 rev. 1.1, 2012-04 2.2 pin configuration the sensitive area is located at the center of the chip. figure 3 pin configuration (top view) 2.3 pin description table 1 pin description pin no. symbol in/out function 1 cos_p o analog positive cosine output 2 cos_n o analog negative cosine output 3 gnd2 ground 4 gnd1 ground 5v gmr o gmr bridge voltage proportional to temperature. diagnostic function. 6v dd supply voltage 7 sin_n o analog negative sine output 8 sin_p o analog positive sine output 12 34 5 6 7 8 center of sensitive area
tle5009 functional description data sheet 11 rev. 1.1, 2012-04 2.4 block diagram figure 4 tle5009 block diagram y-gmr x-gmr amplifier amplifier dc-offset & fuses cos_p v dd cos_n sin_p sin_n gnd1 v gmr gnd2 pmu & temperature compensation
tle5009 specification data sheet 12 rev. 1.1, 2012-04 3 specification 3.1 application circuit figure 5 shows a typical 5v application circuit. the sensor is supplied by the same supply as the microcontroller. the microcontroller comprises 5 a/d inputs used to read in the sensor output sig nals. for reasons of emc and output filtering, the following rc low pass arrangement is recommended. figure 5 application ci rcuit for the tle5009 3.2 absolute maximum ratings attention: stresses above the max. values listed here may cause permanent damage to the device. exposure to absolute maximum rating conditions for extended periods may affect device reliability. maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the device. table 2 absolute maximum ratings parameter symbol values unit note / test condition min. typ. max. supply voltage v dd -0.5 6.5 v max 40 h / lifetime junction temperature t j -40 150 c 150 for 1000 h not additive magnetic field induction b ? 200 ? mt max. 5 min @ t a = 25c ? 150 ? max. 5 h @ t a = 25c storage temperature t st -40 150 c without magnetic field 100 nf sin_ p sin_ n cos_p cos_n **) vgmr gnd2 4 . 7nf *) *) *) *) **) **) **) 5v can rx can tx can can tranceiver gnd microcontroller e.g. infineon xc800 series *) 68 nf **) 10 k ? vd d gnd1 tle5009
tle5009 specification data sheet 13 rev. 1.1, 2012-04 3.3 operating range the following operating conditions must not be exceeded in order to ensure correct operation of the tle5009. all parameters specified in the followi ng sections refer to these operating conditions, unless otherwise noticed. table 3 is valid for -40c < t j < 150c. the magnetic field is defined at room temperature. depending on the maximum junction temperature the maximum field strength is shown in figure 6 . in case of a maximum junction temperature tj = 100c a magnet with up to 60mt at room temperature is ap plicable. the window fo r magnetic field in table 3 is valid for the max junction temperature of the device. figure 6 magnetic input field strength note: the thermal resistances listed in table 10 ?package parameters? on page 28 must be used to calculate the corresponding ambient temperature. table 3 operating range parameter symbol values unit note / test condition min. typ. max. supply voltage 1) 1) supply voltage v dd buffered with 100 nf ceramic capacitor in close proximity to the sensor. v dd 4.5 5.0 5.5 v tle5009-e2000, tle5009-e2010 3.0 3.3 3.6 v tle5009-e1000, TLE5009-E1010 output current 2) 2) not subject to production test - ve rified by design/characterization. i q 0 0.5 ma cos_n; cos_p; sin_n; sin_p 00.1mav gmr load capacitance 2)3) 3) directly connected to the pin. c l 0 4.7 nf cos_n; cos_p; sin_n; sin_p; v gmr magnetic field 2)4) 4) values refer to an homogenous magnetic field (b xy ) without vertical magnetic induction (b z = 0mt). b xy_25 24 50 mt at room temperature, in x/y direction angle range 0360 rotation speed 2)5) 5) typical angle propagation delay is 1.62 at 30000 rpm. n 30000 rpm 30 40 50 60 70 80 90 100 magnetic field (mt) -40 junction temperature (c) 25 85 100 150 20 50 60 70 42 54 65
tle5009 specification data sheet 14 rev. 1.1, 2012-04 calculation of the junction temperature the total power dissipation p tot of the chip increases its temperature above the ambient temperature. the power multiplied by the total thermal resistance r thja (junction-to-ambient) leads to a calculation of the final junction temperature. r thja is the sum of the addition of the values of the two components junction-to-case and case-to-ambient. (2) example (assuming no load on v out ): (3) for molded sensors, the calculation with r thjc is more appropriate. ) ) ( ( out out dd dd dd thja tot thja a j thca thjc thja i v v i v r p r t t t t r r r ? + = = + = + = [] [] [ ] k va a v w k t ma i v v dd dd 25 . 5 ) 0 007 . 0 5 ( 150 7 5 = + ? ? ? ? ? ? = = =
tle5009 specification data sheet 15 rev. 1.1, 2012-04 3.4 characteristics 3.4.1 electrical parameters the indicated electrical parameters apply to the full op erating range, unless otherwise specified. the typical values correspond to a supply voltage v dd = 3.0v - 5.5 v and 25 c, unless individually specified. all other values correspond to -40c < t j < 150c. 3.4.2 electrostatic discharge protection table 4 electrical parameters parameter symbol values unit note / test condition min. typ. max. supply current i dd 7 10.5 ma without resistiv e or capacitive load on output pins por level v por 2.4 2.65 2.97 v power-on reset por hysteresis 1) 1) not subject to production test - ve rified by design/characterization v porhy 50 mv power-on time t pon 30 40 s measured on v gmr pin without external circuit temperature reference voltage v gmr 0.6 1.052 1.8 v temperature proportional output voltage; available on pin v gmr diagnostic function v gmr 00.39v diagnostic for internal errors; available on pin v gmr temperature coefficient of v gmr 1) tc vgmr 0.4 %/k table 5 esd protection parameter symbol values unit notes min. max. esd voltage v hbm 4.0 kv human body model 1) 1) human body model (hbm) accord ing to: ansi/esda/jedec js-001 v sdm 0.5 kv socketed device model 2) 2) socketed device model (sdm) accord ing to: esda/ansi/esd sp5.3.2-2008
tle5009 specification data sheet 16 rev. 1.1, 2012-04 3.4.3 output parameters all parameters apply over the full operating range, unless otherwise specified. the parameters in table 6 refer to single-ended output and table 7 to differential output. for variable names please refer to figure 7 ?single-ended output signals? on page 17 and figure 8 ?differential output of ideal cosine? on page 18 . the following equations describe various types of er rors that combine to the overall angle error. the maximum and zero-crossing of t he sin and cos signals do not occur at the precise angle of 90. the difference between the x and y phases is called the orthogonality error. in equation (4) the angle at zero crossing of the x cosine output is subtracted from the angle at the maximum of the y sin output, which describes the orthogonality of x and y. (4) the amplitudes of sin and cos signals are not equal to each other. the amplitude mismatch is defined as syncronism , shown in equation (5) . this value could also be described as amplitude ratio mismatch. (5) differential signals are centered at the mean output voltage v mvx , v mvy given in table 6 . the differential voltages for x or y are defined in equation (6) . (6) the maximum amplitudes are defined for x or y as given in equation (7) : (7) differential offset is of x or y is defined in equation (8) . (8) in single-ended mode the offset is defined as the mean output voltage. ] [ ] [ 0 max x y ? ? = y x a a k * 100 = sinn sinp ydiff cosn cosp xdiff v v v v v v ? = ? = ( ) () 2 2 _ _ _ _ min diff max diff ydiff min diff max diff xdiff y y a x x a ? = ? = ( ) () 2 2 _ _ _ _ min diff max diff ydiff min diff max diff xdiff y y o x x o + = + =
tle5009 specification data sheet 17 rev. 1.1, 2012-04 figure 7 single-ended output signals table 6 single-ended output parameters parameter symbol values unit note / test condition min. typ. max. x, y amplitude 1) 1) valid at 0h a x , a y 1.40 1.85 v tle5009-e2000, tle5009-e2010 0.90 1.20 v tle5009-e1000, TLE5009-E1010 x, y synchronism 2) 2) valid at 25c, 0h k 95 100 105 % x, y orthogonality error 2) -10 0 10 mean output voltage 3) 3) including x, y offset v mvx , v mvy 0.48*v dd 0.5*v dd 0.52*v dd vv mv =(v max -v min )/2 x,y cut off frequency 4) f c 30 khz -3db attenuation x,y delay time 4) 4) not subject to production test - ve rified by design/characterization t adel 9s output noise 4) v noise 1.5 mv rms
tle5009 specification data sheet 18 rev. 1.1, 2012-04 figure 8 differential output of ideal cosine table 7 differential output parameters parameter symbol values unit note / test condition min. typ. max. x, y amplitude 1) 1) valid at 0h a xdiff , a ydiff 2.8 3.7 v tle5009-e2000, tle5009-e2010 1.8 2.4 v tle5009-e1000, TLE5009-E1010 x, y synchronism 2) 2) valid at 25c, 0h k 95 100 105 % x, y offset 2) o xdiff , o ydiff -50 0 50 mv x, y orthogonality error 2) -10 0 10 x,y cut-off frequency 3) 3) not subject to production test - ve rified by design/characterization f c 30 khz -3db attenuation x,y delay time 3) t adel 9s output noise 3) v noise 3mvrms
tle5009 specification data sheet 19 rev. 1.1, 2012-04 3.4.4 calibration of tle5009 this chapter explains how to dete rmine the giant magnetor esistance (gmr) paramete rs such as amplitude, offset, and the phase of x- and y-channels. extraction of these parameters is essential to achieve the angle accuracy given in table 8 ?angle performance in diff erential applications? on page 25 . the end-of-line calibration is accomp lished using the following sequence ( figure 9 ): figure 9 calibration routine 1. turn magnetic field 360 left and measure x and y values 2. calculate amplitude, offset, phase correction values of left turn 3. turn further 90 left and 90 back right without measurement 4. turn magnetic field 360 right and measure x and y values 5. calculate amplitude, offset, phase correction values of right turn 6. calculate mean values of amplitude, offset, phase correction the calibration has to be done at room temperature with a magnet in the specified magnetic field range. 3.4.4.1 extraction of parameters there are two possible methods for extr acting these parameters. the methods will be discussed in more detail in the next two sections. 3.4.4.1.1 min-max method x max , x min , y max and y min have to be extracted out of every full-turn measurement ( figure 10 ). 0 90 180 270 start end 1.) left turn measurement 3.) right & left turn w/o measurement 4.) right turn measurement
tle5009 specification data sheet 20 rev. 1.1, 2012-04 figure 10 min-max method afterwards, amplitude ( equation (9) , equation (10) ) and offset ( equation (11) , equation (12) ) can be calculated: (9) (10) (11) (12) the corresponding maximum and zero-crossing points of the sin and cos signals do not occur at the precise distance of 90. the difference between x and y phases is called the orthogonality error ( equation (13) ): (13) y x xmax ymax ymin xmin x(ymax) y(xmax) y(xmin) x(ymin) sensor- zeropoint 2 min max x x a x ? = 2 min max y y a y ? = 2 min max x x o x + = 2 min max y y o y + = y x ? ? ? ? =
tle5009 specification data sheet 21 rev. 1.1, 2012-04 figure 11 orthogonality error there is another more accurate way to determine the orthogonality error. the orthogonality can be calculated out of the magnitude of two 90 angle sh ifted components. possible angle combinations are 45 and 135, 135 and 225, 225 and 315 or 315 and 45. the angle value is given by the angle sensor. no refe rence is necessary. therefore the final parameters of amplitude and offset ( chapter 3.4.4.2 ) should be used. at an angle output of 45 the corresponding y(sin) and x(cos) values can be read out. this has been done also at 135 ( figure 12 ). next step is to calculate the length of the magnitudes ( equation (14) ): (14) m 45 , m 135 .. magnitude at 45 and 135 x 45 , x 135 .. cosine values at 45 and 135 y 45 , y 135 .. sine values at 45 and 135 with these magnitudes the orthogonality can be calculated ( equation (15) ): (15) 2 135 2 135 135 2 45 2 45 45 y x m y x m + = + = ) arctan( * 2 45 135 45 135 m m m m + ? = ?
tle5009 specification data sheet 22 rev. 1.1, 2012-04 figure 12 correction of orthogonality error 3.4.4.1.2 exact method this method uses the discrete fourie r transform (dft) to extract the parameters out of the measurements. therefore an accurate reference system is necessary. this method is done using 2 m measurement points at 360 (e.g. m = 8; n = 2 m = 2 8 = 64). dft offset calculation: the offset is calculated by the summation of the x- or y- measurements divided by the number of measurement points ( equation (16) ): (16) x(n) .. x value at measurement point n y(n) .. y value at measurement point n n .. measurement points dft amplitude and phase calculation: to determine the amplitude, the real and imaginary parts must be calculated. this has been done with equation (17) for the x values and equation (18) for the y values. ? describes the reference angle (e.g. n = 64; measurement every 360 / 64 = 5.625 step). describes the reference angle (e.g. n = 64; measurement every 360 / 64 = 5.625 step). (17) (18) x (cos) y (sin) m45 m135 45 135 ( ) ( ) ( ) [ ] () ( ) ( ) [] n n y y y o n n x x x o y x / .. 2 1 / .. 2 1 + + + = + + + = () ( ) ( ) ( ) ( ) ( ) [] () ( ) ( ) ( ) ( ) ( ) [] n n sin n x sin x sin x i x dft n n cos n x cos x cos x r x dft / 2 * * .. 2 * 2 1 * 1 _ _ / 2 * * .. 2 * 2 1 * 1 _ _ + + + = + + + = ( ) ( ) ( ) ( ) ( ) ( ) [ ] () ( ) ( ) ( ) ( ) ( ) [] n n sin n y sin y sin y i y dft n n cos n y cos y cos y r y dft / 2 * * .. 2 * 2 1 * 1 _ _ / 2 * * .. 2 * 2 1 * 1 _ _ + + + = + + + =
tle5009 specification data sheet 23 rev. 1.1, 2012-04 now the amplitude and phase can be calculated ( equation (19) , equation (20) ) (19) (20) 3.4.4.2 final parameters no matter what calibration method is used, you still have to calculate the symmetrical values of the parameters. this is done using the mean value of the clock-wise (cw) rotation parameters and counterclock-wise (ccw) rotation parameters. this calculation has to be done with x and y parameters. these parameters have to be used for the signal correction. (21) (a,o, ?) m .. mean parameters (a,o, ?) cw .. parameters of clock-wise rotation (a,o, ?) ccw .. parameters of co unterclock-wise rotation 2 2 2 2 ) _ _ ( ) _ _ ( ) _ _ ( ) _ _ ( i y dft r y dft a i x dft r x dft a y x + = + = y x y x r y dft i y dft r x dft i x dft ? ? ? ? ? ? = ? = = _ _ _ _ arctan 2 _ _ _ _ arctan 2 2 2 ccw cw m ccw cw m ccw cw m o o o a a a ? ? ? + = + = + =
tle5009 specification data sheet 24 rev. 1.1, 2012-04 3.4.4.3 angle calculation to get highly accurate angle values, the fo llowing angle calculation must be performed. figure 13 shows the implementation within a microcontroller. figure 13 implementation of angle calculation offset correction (offset_corr) after the x and y values are read out, the room temperature offset value must be subtracted ( equation (22) ): (22) amplitude normaliza tion (gain_corr) the next step is to normalize the x and y values by using the mean values determined in the calibration. (23) non-orthogonality correction (angle_corr) the influence of the non-orthogonalit y can be compensated for by using equation (24) , in which only the y channel must be corrected. (24) resulting angle after correction of all errors, the resulting angle can be calculated using the arctan function 1) . (25) 1) microcontroller library function ?arctan2(y 3 ,x 2 )? works better to resolve 360 sensor x sensor y calibrations- algorithm + + * * y-corr atan (cordic) x_tmp y_tmp offset_ corr gain_ corr angle_ corr y x o y y o x x ? = ? = 1 1 ym xm a y y a x x 1 2 1 2 = = ) cos( ) sin( * 2 2 3 ? ? ? ? ? = x y y x x y ? ? = ) arctan( 2 3
tle5009 specification data sheet 25 rev. 1.1, 2012-04 3.4.5 angle performance the overall angle error represents the relative angular erro r. this error describes the deviation from the reference line after zero angle definition. the typical value correspond to a supply voltage v dd = 3.0v - 5.5 v and 25 c, unless individually specified. all ot her values correspond to -40c < t j < 150c. calibration of offset, orthogonality, syncronism and phase error at 25c are required to achieve the overall angle error specified. for the detailed calibration procedure refer to chapter 3.4.4 . infineon offers temperature compensated versions of the device tle5009-e2010, TLE5009-E1010. these devices have an improved angular accuracy as can be seen in table 8 . table 8 angle performance in differential applications parameter symbol values unit note / test condition min. typ. max. overall angle error 1)2)3) 1) including hysteresis error 2) valid at 0h 3) valid for differential applications. the mean output voltage variation in single ended mode is not included in the angle erro r. please contact infineon for information about possible optimization for single ended applications. err 0.6 3 tle5009-e2000, tle5009-e1000 0.6 2.2 tle5009-e2010, TLE5009-E1010
tle5009 specification data sheet 26 rev. 1.1, 2012-04 3.5 safety features 3.5.1 built in error diagnosis the device sensor provides two functions at the v gmr pin. during normal operation the voltage measured at this pin is temperature dependent. the typical voltage at room temperature and the temperature coefficient are given in table 4 ?electrical parameters? on page 15 . the second purpose of pin v gmr is the diagnosis functionality. in case t he device detects an internal error, the pin is driven to a low level as described in table 4 ?electrical parameters? on page 15 . the errors that can be detected by monitoring the status of the v gmr pin are: ? start-up failure ? overvoltage at vdd (threshold level min. 6v, max. 7v) ? undervoltage at internal nodes 3.5.2 external diagnosis adressing the demands for functional safety, run time chec ks can be done to increase the diagnostic coverage. depending on the application specif ics such as the available time an d processing capab ilities, the sensor behaviour is monitored and compared with the specified behaviour of the device. 3.5.2.1 vector length check differential voltage mode a comprehensive safety check is to monitor the vector le ngth of vx and vy signals. output signals representing sine and cosine have a fixed 90 phase relationship to each other. to determine if the output signals are valid, the length of the output vector length must be nearly constant independent of the magnet position. the vector length corresponds to the amplitude of the output signals and utilizes the fact th at there is a 90 phase shift between sine and cosine output. it is calculated according to equation (26) . as illustrated in figure 14 ?valid vector length? , the vector describes a circle along one revolution of the magnet. the length of the vector is almost constant, slightly influenced by gmr synchronicit y, orthogonality, offset and temperature. (26) figure 14 valid vector length 2 _ 2 _ diff y diff x vec v v v + = v x (cos) v y (sin) v vec v x v y
tle5009 specification data sheet 27 rev. 1.1, 2012-04 the resulting vector length must always be within the range given in table 9 , depending on the supply voltage type of the tle5009 used. if the vector length is outside this range, then this might indicate malfunction of the tle5009 or of the reading a/d converter. 3.6 electro magnetic compatibility (emc) the tle5009 is characterized according to the emc requirements described in the ?generic ic emc test specification? version 1.2 from nove mber 15, 2007. the classification of the tle5009 is done for local pins. table 9 valid vector length parameter symbol values unit note / test condition min. typ. max. vector length differential voltage v vec 2.6 3.8 v tle5009-e2000, tle5009-e2010 1.6 2.7 v tle5009-e1000, TLE5009-E1010
tle5009 package information data sheet 28 rev. 1.1, 2012-04 4 package information the tle5009 comes in a green smd pa ckage with lead-free plating, the pg-dso-8 . for alternative packaging, such as bare die please contact infineon. 4.1 package parameters 4.2 package outline figure 15 package dimensions table 10 package parameters parameter symbol limit values unit notes min. typ. max. thermal resistance r thja 150 200 k/w junction-to-air 1) 1) according to jedec jesd51-7 r thjc 75 k/w junction-to-case r thjl 85 k/w junction-to-lead soldering moisture level msl 3 260c lead frame cu plating sn 100% > 7 m
tle5009 package information data sheet 29 rev. 1.1, 2012-04 figure 16 position of sensing element 4.3 footprint figure 17 footprint 4.4 packing figure 18 tape and reel 0.65 1.31 5.69 1.27 8 6.4 5.2 0.3 0.3 12 2.1 1.75
tle5009 package information data sheet 30 rev. 1.1, 2012-04 4.5 marking position marking description 1st line 5009xxx see ordering table on page 7 2nd line xxx lot code 3rd line gsxxxx g..green, 4-digit..date code
tle5009 references data sheet 31 rev. 1.1, 2012-04 references
published by infineon technologies ag www.infineon.com


▲Up To Search▲   

 
Price & Availability of TLE5009-E1010

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X